PTPlot: $Z_2$-symmetric singlet scalar benchmark points
Benchmark points for the SM extended with a scalar singlet with $Z_2$ symmetry (supplied by J. Kozaczuk).
The new physics potential reads $$\Delta V = \frac{1}{2}a_2 |H|^2 S^2 + \frac{1}{2} b_2 S^2 + \frac{1}{4} b_4 S^4.$$ The parameter $m$ below stands for the physical mass of the singlet. For each pair $(m, a_2)$, the remaining free parameter, namely the singlet self coupling $b_4$, is taken to be the one that maximizes the strength of the phase transition, computed using a modified version of CosmoTransitions (see https://arxiv.org/abs/1109.4189).
General parameters used for plotting: $v_\mathrm{w} = 1.0$, $T_* = 50.0 \, \mathrm{GeV}$ (when all points are plotted), $g_* = 106.75$.
Mission profile: Science Requirements Document (3 years)
Full list of points:
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.3$ ] $\alpha_\theta = 0.0652$; $\beta/H_* = 295$; $T_* = 69.1 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.4$ ] $\alpha_\theta = 0.0837$; $\beta/H_* = 439$; $T_* = 61.1 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.5$ ] $\alpha_\theta = 0.2936$; $\beta/H_* = 410$; $T_* = 42.4 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.6$ ] $\alpha_\theta = 0.1842$; $\beta/H_* = 690$; $T_* = 45.7 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.2583$; $\beta/H_* = 1183$; $T_* = 40.4 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.5631$; $\beta/H_* = 2420$; $T_* = 31.9 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.4355$; $\beta/H_* = 4501$; $T_* = 32.9 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.2287$; $\beta/H_* = 5883$; $T_* = 37.9 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.8011$; $\beta/H_* = 11093$; $T_* = 26.6 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.2921$; $\beta/H_* = 11746$; $T_* = 33.5 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.2945$; $\beta/H_* = 16545$; $T_* = 32.5 \, \mathrm{GeV}$; [plot]
- [ $m = 70\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 1.0036$; $\beta/H_* = 2805$; $T_* = 23.7 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.3$ ] $\alpha_\theta = 0.0143$; $\beta/H_* = 587$; $T_* = 101.7 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.4$ ] $\alpha_\theta = 0.0229$; $\beta/H_* = 654$; $T_* = 87.7 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.5$ ] $\alpha_\theta = 0.0439$; $\beta/H_* = 538$; $T_* = 72.2 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.6$ ] $\alpha_\theta = 0.1146$; $\beta/H_* = 419$; $T_* = 54.8 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.6853$; $\beta/H_* = 406$; $T_* = 33.8 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.9776$; $\beta/H_* = 800$; $T_* = 30.0 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.4563$; $\beta/H_* = 1098$; $T_* = 35.1 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.4422$; $\beta/H_* = 1959$; $T_* = 34.5 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.5729$; $\beta/H_* = 2692$; $T_* = 31.5 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.9048$; $\beta/H_* = 6471$; $T_* = 27.4 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.1715$; $\beta/H_* = 5958$; $T_* = 41.1 \, \mathrm{GeV}$; [plot]
- [ $m = 80\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.3987$; $\beta/H_* = 8104$; $T_* = 32.1 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 0.4$ ] $\alpha_\theta = 0.0147$; $\beta/H_* = 599$; $T_* = 100.1 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 0.5$ ] $\alpha_\theta = 0.1131$; $\beta/H_* = 155$; $T_* = 60.2 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 0.6$ ] $\alpha_\theta = 0.1879$; $\beta/H_* = 153$; $T_* = 51.1 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.7856$; $\beta/H_* = 138$; $T_* = 34.7 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.4926$; $\beta/H_* = 263$; $T_* = 37.7 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.8182$; $\beta/H_* = 398$; $T_* = 32.4 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.5058$; $\beta/H_* = 709$; $T_* = 35.5 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.5276$; $\beta/H_* = 913$; $T_* = 34.3 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.7126$; $\beta/H_* = 2013$; $T_* = 31.2 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.5435$; $\beta/H_* = 3150$; $T_* = 32.7 \, \mathrm{GeV}$; [plot]
- [ $m = 90\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.5164$; $\beta/H_* = 2556$; $T_* = 32.4 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 0.5$ ] $\alpha_\theta = 0.0198$; $\beta/H_* = 369$; $T_* = 93.6 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 0.6$ ] $\alpha_\theta = 0.0990$; $\beta/H_* = 133$; $T_* = 62.4 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.1617$; $\beta/H_* = 106$; $T_* = 53.7 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.1107$; $\beta/H_* = 251$; $T_* = 57.2 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.4803$; $\beta/H_* = 168$; $T_* = 38.9 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.8677$; $\beta/H_* = 243$; $T_* = 32.8 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.5733$; $\beta/H_* = 357$; $T_* = 35.5 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.6427$; $\beta/H_* = 504$; $T_* = 33.9 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.8888$; $\beta/H_* = 855$; $T_* = 30.7 \, \mathrm{GeV}$; [plot]
- [ $m = 100\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.6931$; $\beta/H_* = 1032$; $T_* = 32.0 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 0.5$ ] $\alpha_\theta = 0.0091$; $\beta/H_* = 441$; $T_* = 112.3 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 0.6$ ] $\alpha_\theta = 0.0254$; $\beta/H_* = 266$; $T_* = 88.6 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.0904$; $\beta/H_* = 95$; $T_* = 64.2 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.1389$; $\beta/H_* = 99$; $T_* = 56.4 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.1151$; $\beta/H_* = 173$; $T_* = 57.6 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.4001$; $\beta/H_* = 118$; $T_* = 41.5 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.7499$; $\beta/H_* = 138$; $T_* = 34.9 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.5710$; $\beta/H_* = 234$; $T_* = 36.6 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.6565$; $\beta/H_* = 323$; $T_* = 34.7 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.9364$; $\beta/H_* = 490$; $T_* = 31.4 \, \mathrm{GeV}$; [plot]
- [ $m = 110\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.7561$; $\beta/H_* = 792$; $T_* = 32.5 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 0.6$ ] $\alpha_\theta = 0.0179$; $\beta/H_* = 185$; $T_* = 98.3 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.0271$; $\beta/H_* = 250$; $T_* = 87.6 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.0679$; $\beta/H_* = 135$; $T_* = 69.2 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.0916$; $\beta/H_* = 135$; $T_* = 63.0 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.2328$; $\beta/H_* = 193$; $T_* = 49.2 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.1147$; $\beta/H_* = 53$; $T_* = 57.4 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.4401$; $\beta/H_* = 109$; $T_* = 40.6 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.4130$; $\beta/H_* = 157$; $T_* = 40.5 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.5203$; $\beta/H_* = 215$; $T_* = 37.7 \, \mathrm{GeV}$; [plot]
- [ $m = 120\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.7757$; $\beta/H_* = 274$; $T_* = 33.8 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 0.7$ ] $\alpha_\theta = 0.0208$; $\beta/H_* = 138$; $T_* = 95.3 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.0216$; $\beta/H_* = 264$; $T_* = 92.2 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.0423$; $\beta/H_* = 267$; $T_* = 77.8 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.1273$; $\beta/H_* = 71$; $T_* = 58.8 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.3784$; $\beta/H_* = 26$; $T_* = 44.4 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.3251$; $\beta/H_* = 64$; $T_* = 45.3 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.2141$; $\beta/H_* = 111$; $T_* = 49.3 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.4279$; $\beta/H_* = 100$; $T_* = 41.0 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.5718$; $\beta/H_* = 131$; $T_* = 37.7 \, \mathrm{GeV}$; [plot]
- [ $m = 130\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.8881$; $\beta/H_* = 178$; $T_* = 33.6 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 0.8$ ] $\alpha_\theta = 0.0117$; $\beta/H_* = 247$; $T_* = 106.8 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 0.9$ ] $\alpha_\theta = 0.0271$; $\beta/H_* = 189$; $T_* = 88.2 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.0388$; $\beta/H_* = 160$; $T_* = 79.9 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.0835$; $\beta/H_* = 71$; $T_* = 65.7 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.1339$; $\beta/H_* = 65$; $T_* = 57.8 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.1524$; $\beta/H_* = 84$; $T_* = 55.2 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.2637$; $\beta/H_* = 59$; $T_* = 47.7 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.7398$; $\beta/H_* = 166$; $T_* = 36.7 \, \mathrm{GeV}$; [plot]
- [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.7695$; $\beta/H_* = 70$; $T_* = 35.9 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1$ ] $\alpha_\theta = 0.0233$; $\beta/H_* = 133$; $T_* = 91.7 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.0438$; $\beta/H_* = 126$; $T_* = 78.3 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.0714$; $\beta/H_* = 128$; $T_* = 68.8 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.0917$; $\beta/H_* = 80$; $T_* = 64.0 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.2016$; $\beta/H_* = 53$; $T_* = 52.3 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.3331$; $\beta/H_* = 30$; $T_* = 45.8 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.3203$; $\beta/H_* = 49$; $T_* = 45.6 \, \mathrm{GeV}$; [plot]
- [ $m = 150\, \mathrm{GeV}, \, a_2 = 1.7$ ] $\alpha_\theta = 0.4527$; $\beta/H_* = 51$; $T_* = 41.6 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.1$ ] $\alpha_\theta = 0.0203$; $\beta/H_* = 139$; $T_* = 94.7 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.0736$; $\beta/H_* = 34$; $T_* = 70.1 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.0363$; $\beta/H_* = 147$; $T_* = 81.1 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.1483$; $\beta/H_* = 29$; $T_* = 57.7 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.0991$; $\beta/H_* = 103$; $T_* = 62.7 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.1352$; $\beta/H_* = 81$; $T_* = 57.5 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.7$ ] $\alpha_\theta = 0.2593$; $\beta/H_* = 38$; $T_* = 48.7 \, \mathrm{GeV}$; [plot]
- [ $m = 160\, \mathrm{GeV}, \, a_2 = 1.8$ ] $\alpha_\theta = 0.3199$; $\beta/H_* = 57$; $T_* = 45.9 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.2$ ] $\alpha_\theta = 0.0214$; $\beta/H_* = 84$; $T_* = 94.2 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.3$ ] $\alpha_\theta = 0.0338$; $\beta/H_* = 75$; $T_* = 84.1 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.0500$; $\beta/H_* = 82$; $T_* = 76.0 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.0660$; $\beta/H_* = 81$; $T_* = 70.5 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.0835$; $\beta/H_* = 77$; $T_* = 66.0 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.7$ ] $\alpha_\theta = 0.1704$; $\beta/H_* = 36$; $T_* = 55.1 \, \mathrm{GeV}$; [plot]
- [ $m = 170\, \mathrm{GeV}, \, a_2 = 1.8$ ] $\alpha_\theta = 0.1506$; $\beta/H_* = 66$; $T_* = 56.2 \, \mathrm{GeV}$; [plot]
- [ $m = 180\, \mathrm{GeV}, \, a_2 = 1.4$ ] $\alpha_\theta = 0.0206$; $\beta/H_* = 149$; $T_* = 94.1 \, \mathrm{GeV}$; [plot]
- [ $m = 180\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.0342$; $\beta/H_* = 117$; $T_* = 83.4 \, \mathrm{GeV}$; [plot]
- [ $m = 180\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.0558$; $\beta/H_* = 92$; $T_* = 73.9 \, \mathrm{GeV}$; [plot]
- [ $m = 180\, \mathrm{GeV}, \, a_2 = 1.7$ ] $\alpha_\theta = 0.0856$; $\beta/H_* = 54$; $T_* = 66.2 \, \mathrm{GeV}$; [plot]
- [ $m = 180\, \mathrm{GeV}, \, a_2 = 1.8$ ] $\alpha_\theta = 0.1263$; $\beta/H_* = 40$; $T_* = 59.9 \, \mathrm{GeV}$; [plot]
- [ $m = 180\, \mathrm{GeV}, \, a_2 = 1.9$ ] $\alpha_\theta = 0.1794$; $\beta/H_* = 35$; $T_* = 54.6 \, \mathrm{GeV}$; [plot]
- [ $m = 190\, \mathrm{GeV}, \, a_2 = 1.5$ ] $\alpha_\theta = 0.0256$; $\beta/H_* = 64$; $T_* = 90.5 \, \mathrm{GeV}$; [plot]
- [ $m = 190\, \mathrm{GeV}, \, a_2 = 1.6$ ] $\alpha_\theta = 0.0386$; $\beta/H_* = 57$; $T_* = 81.8 \, \mathrm{GeV}$; [plot]
- [ $m = 190\, \mathrm{GeV}, \, a_2 = 1.7$ ] $\alpha_\theta = 0.0697$; $\beta/H_* = 28$; $T_* = 70.8 \, \mathrm{GeV}$; [plot]
- [ $m = 190\, \mathrm{GeV}, \, a_2 = 1.8$ ] $\alpha_\theta = 0.0605$; $\beta/H_* = 63$; $T_* = 72.5 \, \mathrm{GeV}$; [plot]
- [ $m = 190\, \mathrm{GeV}, \, a_2 = 1.9$ ] $\alpha_\theta = 0.1131$; $\beta/H_* = 49$; $T_* = 62.1 \, \mathrm{GeV}$; [plot]
- [ $m = 190\, \mathrm{GeV}, \, a_2 = 2$ ] $\alpha_\theta = 0.1069$; $\beta/H_* = 67$; $T_* = 62.4 \, \mathrm{GeV}$; [plot]
- [ $m = 200\, \mathrm{GeV}, \, a_2 = 1.7$ ] $\alpha_\theta = 0.0188$; $\beta/H_* = 109$; $T_* = 96.0 \, \mathrm{GeV}$; [plot]
- [ $m = 200\, \mathrm{GeV}, \, a_2 = 1.8$ ] $\alpha_\theta = 0.0306$; $\beta/H_* = 116$; $T_* = 85.8 \, \mathrm{GeV}$; [plot]
- [ $m = 200\, \mathrm{GeV}, \, a_2 = 1.9$ ] $\alpha_\theta = 0.0475$; $\beta/H_* = 78$; $T_* = 77.2 \, \mathrm{GeV}$; [plot]
- [ $m = 200\, \mathrm{GeV}, \, a_2 = 2$ ] $\alpha_\theta = 0.0869$; $\beta/H_* = 38$; $T_* = 66.6 \, \mathrm{GeV}$; [plot]
- [ $m = 200\, \mathrm{GeV}, \, a_2 = 2.1$ ] $\alpha_\theta = 0.0996$; $\beta/H_* = 52$; $T_* = 64.1 \, \mathrm{GeV}$; [plot]
- [ $m = 200\, \mathrm{GeV}, \, a_2 = 2.2$ ] $\alpha_\theta = 0.1261$; $\beta/H_* = 44$; $T_* = 60.2 \, \mathrm{GeV}$; [plot]
- [ $m = 210\, \mathrm{GeV}, \, a_2 = 1.8$ ] $\alpha_\theta = 0.0145$; $\beta/H_* = 157$; $T_* = 101.7 \, \mathrm{GeV}$; [plot]
- [ $m = 210\, \mathrm{GeV}, \, a_2 = 1.9$ ] $\alpha_\theta = 0.0336$; $\beta/H_* = 98$; $T_* = 84.7 \, \mathrm{GeV}$; [plot]
- [ $m = 210\, \mathrm{GeV}, \, a_2 = 2$ ] $\alpha_\theta = 0.0455$; $\beta/H_* = 42$; $T_* = 78.6 \, \mathrm{GeV}$; [plot]
- [ $m = 210\, \mathrm{GeV}, \, a_2 = 2.1$ ] $\alpha_\theta = 0.0766$; $\beta/H_* = 25$; $T_* = 69.2 \, \mathrm{GeV}$; [plot]
- [ $m = 210\, \mathrm{GeV}, \, a_2 = 2.2$ ] $\alpha_\theta = 0.0791$; $\beta/H_* = 54$; $T_* = 68.2 \, \mathrm{GeV}$; [plot]
- [ $m = 210\, \mathrm{GeV}, \, a_2 = 2.3$ ] $\alpha_\theta = 0.1112$; $\beta/H_* = 33$; $T_* = 62.6 \, \mathrm{GeV}$; [plot]
- [ $m = 220\, \mathrm{GeV}, \, a_2 = 2$ ] $\alpha_\theta = 0.0167$; $\beta/H_* = 157$; $T_* = 98.6 \, \mathrm{GeV}$; [plot]
- [ $m = 220\, \mathrm{GeV}, \, a_2 = 2.1$ ] $\alpha_\theta = 0.0302$; $\beta/H_* = 90$; $T_* = 86.6 \, \mathrm{GeV}$; [plot]
- [ $m = 220\, \mathrm{GeV}, \, a_2 = 2.2$ ] $\alpha_\theta = 0.0378$; $\beta/H_* = 51$; $T_* = 81.9 \, \mathrm{GeV}$; [plot]
- [ $m = 220\, \mathrm{GeV}, \, a_2 = 2.3$ ] $\alpha_\theta = 0.0566$; $\beta/H_* = 57$; $T_* = 74.3 \, \mathrm{GeV}$; [plot]
- [ $m = 220\, \mathrm{GeV}, \, a_2 = 2.4$ ] $\alpha_\theta = 0.0751$; $\beta/H_* = 63$; $T_* = 69.2 \, \mathrm{GeV}$; [plot]
- [ $m = 230\, \mathrm{GeV}, \, a_2 = 2.2$ ] $\alpha_\theta = 0.0373$; $\beta/H_* = 27$; $T_* = 83.3 \, \mathrm{GeV}$; [plot]
- [ $m = 230\, \mathrm{GeV}, \, a_2 = 2.3$ ] $\alpha_\theta = 0.0383$; $\beta/H_* = 58$; $T_* = 82.2 \, \mathrm{GeV}$; [plot]
- [ $m = 230\, \mathrm{GeV}, \, a_2 = 2.4$ ] $\alpha_\theta = 0.0757$; $\beta/H_* = 28$; $T_* = 70.1 \, \mathrm{GeV}$; [plot]
- [ $m = 230\, \mathrm{GeV}, \, a_2 = 2.5$ ] $\alpha_\theta = 0.0574$; $\beta/H_* = 66$; $T_* = 74.2 \, \mathrm{GeV}$; [plot]
- [ $m = 230\, \mathrm{GeV}, \, a_2 = 2.6$ ] $\alpha_\theta = 0.1240$; $\beta/H_* = 24$; $T_* = 61.8 \, \mathrm{GeV}$; [plot]
- [ $m = 240\, \mathrm{GeV}, \, a_2 = 2.4$ ] $\alpha_\theta = 0.0175$; $\beta/H_* = 124$; $T_* = 97.6 \, \mathrm{GeV}$; [plot]
- [ $m = 240\, \mathrm{GeV}, \, a_2 = 2.5$ ] $\alpha_\theta = 0.0292$; $\beta/H_* = 75$; $T_* = 87.2 \, \mathrm{GeV}$; [plot]
- [ $m = 240\, \mathrm{GeV}, \, a_2 = 2.6$ ] $\alpha_\theta = 0.0426$; $\beta/H_* = 102$; $T_* = 79.9 \, \mathrm{GeV}$; [plot]
- [ $m = 240\, \mathrm{GeV}, \, a_2 = 2.7$ ] $\alpha_\theta = 0.0559$; $\beta/H_* = 60$; $T_* = 74.8 \, \mathrm{GeV}$; [plot]
- [ $m = 250\, \mathrm{GeV}, \, a_2 = 2.6$ ] $\alpha_\theta = 0.0181$; $\beta/H_* = 90$; $T_* = 96.8 \, \mathrm{GeV}$; [plot]
- [ $m = 250\, \mathrm{GeV}, \, a_2 = 2.7$ ] $\alpha_\theta = 0.0235$; $\beta/H_* = 101$; $T_* = 91.4 \, \mathrm{GeV}$; [plot]
- [ $m = 250\, \mathrm{GeV}, \, a_2 = 2.8$ ] $\alpha_\theta = 0.0394$; $\beta/H_* = 113$; $T_* = 81.4 \, \mathrm{GeV}$; [plot]
- [ $m = 250\, \mathrm{GeV}, \, a_2 = 2.9$ ] $\alpha_\theta = 0.0647$; $\beta/H_* = 45$; $T_* = 72.5 \, \mathrm{GeV}$; [plot]
- [ $m = 260\, \mathrm{GeV}, \, a_2 = 2.8$ ] $\alpha_\theta = 0.0166$; $\beta/H_* = 100$; $T_* = 98.6 \, \mathrm{GeV}$; [plot]
- [ $m = 260\, \mathrm{GeV}, \, a_2 = 2.9$ ] $\alpha_\theta = 0.0309$; $\beta/H_* = 35$; $T_* = 86.3 \, \mathrm{GeV}$; [plot]
[plot all points with these parameters]
Results for point [ $m = 140\, \mathrm{GeV}, \, a_2 = 1.5$ ]
Using the following model specific parameters: $\alpha_\theta = 0.7398$; $\beta/H_* = 166$; $T_* = 36.7 \, \mathrm{GeV}$;
And the following general parameters: $v_\mathrm{w} = 1.0; $ $g_* = 106.75; $
New: download the source points as a CSV [experimental]
[Back to top] [Home]