PTPlot: Randall-Sundrum model benchmark points
Benchmark points for the holographic phase transition in Randall-Sundrum models (supplied by G. Nardini).
notes go here
General parameters used for plotting:
$v_\mathrm{w} = 0.95$,
$T_* = 500.0 \, \mathrm{GeV}$ (when all points
are plotted),
$g_* = 106.75$.
Mission profile: Science Requirements Document (3 years)
Full list of points:
[Show list of points]
-
(B1):
[ $B_1$ ]
$\alpha_\theta = 1.6000$;
$\beta/H_* = 229$;
$T_* = 1053 \, \mathrm{GeV}$;
[plot]
-
(B2):
[ $B_2$ ]
$\alpha_\theta = 4.6100$;
$\beta/H_* = 98$;
$T_* = 821.8 \, \mathrm{GeV}$;
[plot]
-
(B3):
[ $B_3$ ]
$\alpha_\theta = 7.8600$;
$\beta/H_* = 62$;
$T_* = 770.4 \, \mathrm{GeV}$;
[plot]
-
(B4):
[ $B_4$ ]
$\alpha_\theta = 17.1000$;
$\beta/H_* = 30$;
$T_* = 730.6 \, \mathrm{GeV}$;
[plot]
-
(B5):
[ $B_5$ ]
$\alpha_\theta = 90.1000$;
$\beta/H_* = 93$;
$T_* = 694 \, \mathrm{GeV}$;
[plot]
-
(B6):
[ $B_6$ ]
$\alpha_\theta = 90.1000$;
$\beta/H_* = 93$;
$T_* = 694 \, \mathrm{GeV}$;
[plot]
-
(B7):
[ $B_7$ ]
$\alpha_\theta = 1047$;
$\beta/H_* = 47$;
$T_* = 612 \, \mathrm{GeV}$;
[plot]
-
(B8):
[ $B_8$ ]
$\alpha_\theta = 40000$;
$\beta/H_* = 17$;
$T_* = 566.4 \, \mathrm{GeV}$;
[plot]
-
(B9):
[ $B_9$ ]
$\alpha_\theta = 4100000$;
$\beta/H_* = 4$;
$T_* = 549.3 \, \mathrm{GeV}$;
[plot]
-
(B10):
[ $B_{10}$ ]
$\alpha_\theta = 33000000$;
$\beta/H_* = 2$;
$T_* = 546.8 \, \mathrm{GeV}$;
[plot]
-
(B11):
[ $B_{11}$ ]
$\alpha_\theta = 450000000$;
$\beta/H_* = 0$;
$T_* = 545.6 \, \mathrm{GeV}$;
[plot]
-
(B11):
[ $B_{11}$ ]
$\alpha_\theta = 4.3000$;
$\beta/H_* = 107$;
$T_* = 578.4 \, \mathrm{GeV}$;
[plot]
-
(C2):
[ $C_2$ ]
$\alpha_\theta = 5000$;
$\beta/H_* = 28$;
$T_* = 416.2 \, \mathrm{GeV}$;
[plot]
-
(D1):
[ $D_1$ ]
$\alpha_\theta = 5$;
$\beta/H_* = 11$;
$T_* = 133.7 \, \mathrm{GeV}$;
[plot]
-
(E1):
[ $E_1$ ]
$\alpha_\theta = 203$;
$\beta/H_* = 78$;
$T_* = 567.2 \, \mathrm{GeV}$;
[plot]
[plot all points with these parameters]
[Back to top] [Home]