PTPlot: Singlet scalar benchmark points
Benchmark points for the SM extended with a general real singlet scalar field, $S$ (supplied by J. Kozaczuk).
$$ \Delta V = b_1 S + \frac{1}{2} b_2 S^2 + \frac{1}{2} a_1 S \left| H \right|^2 + \frac{1}{2} a_2 S^2 \left| H \right|^2 + \frac{1}{3} b_3 S^3 + \frac{1}{4} b_4 S^4. $$ In the mass basis, the mass-ordered eigenstates are $m_{1,2}$. The mixing angle between $S$ and $H$ is denoted as $\theta$. Masses considered are $m_2 = 170,\, 240\, \mathrm{GeV}$. We show results for points with $m_2= 170,\, 240\, \mathrm{GeV}$ and $\sin \theta = 0.1$, which are likely to be probed by direct searches at the high-luminosity LHC with $3\, \mathrm{ab}^{-1}$, and $\sin\theta = 0.01$, which will likely remain undetected at colliders. The various parameters in the potential are scanned over as described in the text. See also JHEP 1708 (2017) 096 [http://arxiv.org/abs/arXiv:1704.05844] for more details.
General parameters used for plotting: $v_\mathrm{w} = 1.0$, $T_* = 50.0 \, \mathrm{GeV}$ (when all points are plotted), $g_* = 107.75$.
Mission profile: Science Requirements Document (3 years)
This model has the following scenarios:
- Not probed by HL-LHC: Set of points that are not probed by HL-LHC [plot scenario]
- Will be probed by HL-LHC: Set of points that will be probed by HL-LHC [plot scenario]
Full list of points:
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.471239$, $b_3 = 394.144$, $b_4 = 2.34572$) ] $\alpha_\theta = 0.0181$; $\beta/H_* = 899$; $T_* = 97.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.471239$, $b_3 = 394.144$, $b_4 = 2.25189$) ] $\alpha_\theta = 0.0318$; $\beta/H_* = 2601$; $T_* = 84.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 3.54539$) ] $\alpha_\theta = 0.0108$; $\beta/H_* = 920$; $T_* = 107.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 3.39124$) ] $\alpha_\theta = 0.0171$; $\beta/H_* = 821$; $T_* = 96.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 3.2371$) ] $\alpha_\theta = 0.0319$; $\beta/H_* = 639$; $T_* = 83.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 3.08295$) ] $\alpha_\theta = 0.0871$; $\beta/H_* = 847$; $T_* = 64.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 262.763$, $b_4 = 1.67552$) ] $\alpha_\theta = 0.0188$; $\beta/H_* = 281$; $T_* = 97.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 262.763$, $b_4 = 1.6085$) ] $\alpha_\theta = 0.2371$; $\beta/H_* = 38$; $T_* = 54.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.53869$) ] $\alpha_\theta = 0.0133$; $\beta/H_* = 905$; $T_* = 102.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.37784$) ] $\alpha_\theta = 0.0222$; $\beta/H_* = 790$; $T_* = 90.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.21699$) ] $\alpha_\theta = 0.0472$; $\beta/H_* = 697$; $T_* = 75.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.05614$) ] $\alpha_\theta = 0.1752$; $\beta/H_* = 3085$; $T_* = 53.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 0.76969$, $b_3 = 525.526$, $b_4 = 6.21523$) ] $\alpha_\theta = 0.0124$; $\beta/H_* = 1595$; $T_* = 90.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0132$; $\beta/H_* = 1390$; $T_* = 100.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0225$; $\beta/H_* = 967$; $T_* = 88.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0593$; $\beta/H_* = 700$; $T_* = 69.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -262.763$, $b_4 = 2.81487$) ] $\alpha_\theta = 0.0105$; $\beta/H_* = 850$; $T_* = 106.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -262.763$, $b_4 = 2.68083$) ] $\alpha_\theta = 0.0170$; $\beta/H_* = 517$; $T_* = 96.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -262.763$, $b_4 = 2.54678$) ] $\alpha_\theta = 0.0367$; $\beta/H_* = 283$; $T_* = 81.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -131.381$, $b_4 = 1.17286$) ] $\alpha_\theta = 0.0150$; $\beta/H_* = 340$; $T_* = 100.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = -131.381$, $b_4 = 1.12595$) ] $\alpha_\theta = 0.0405$; $\beta/H_* = 81$; $T_* = 81.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 131.381$, $b_4 = 1.23318$) ] $\alpha_\theta = 0.0121$; $\beta/H_* = 423$; $T_* = 104.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 131.381$, $b_4 = 1.17956$) ] $\alpha_\theta = 0.0247$; $\beta/H_* = 214$; $T_* = 90.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 262.763$, $b_4 = 2.81487$) ] $\alpha_\theta = 0.0133$; $\beta/H_* = 670$; $T_* = 101.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 262.763$, $b_4 = 2.67412$) ] $\alpha_\theta = 0.0235$; $\beta/H_* = 412$; $T_* = 89.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 262.763$, $b_4 = 2.53338$) ] $\alpha_\theta = 0.0743$; $\beta/H_* = 154$; $T_* = 68.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0104$; $\beta/H_* = 2030$; $T_* = 105.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0151$; $\beta/H_* = 1342$; $T_* = 96.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0270$; $\beta/H_* = 949$; $T_* = 83.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0830$; $\beta/H_* = 762$; $T_* = 63.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0132$; $\beta/H_* = 7714$; $T_* = 97.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0176$; $\beta/H_* = 2275$; $T_* = 91.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0256$; $\beta/H_* = 1568$; $T_* = 83.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0452$; $\beta/H_* = 1125$; $T_* = 71.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.1261$; $\beta/H_* = 1578$; $T_* = 55.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -262.763$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0132$; $\beta/H_* = 1011$; $T_* = 99.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -262.763$, $b_4 = 4.06145$) ] $\alpha_\theta = 0.0233$; $\beta/H_* = 566$; $T_* = 87.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -131.381$, $b_4 = 2.46636$) ] $\alpha_\theta = 0.0108$; $\beta/H_* = 762$; $T_* = 104.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -131.381$, $b_4 = 2.31221$) ] $\alpha_\theta = 0.0168$; $\beta/H_* = 522$; $T_* = 95.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = -131.381$, $b_4 = 2.15806$) ] $\alpha_\theta = 0.0362$; $\beta/H_* = 250$; $T_* = 80.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 0$, $b_4 = 0.911481$) ] $\alpha_\theta = 0.0117$; $\beta/H_* = 520$; $T_* = 103.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 0$, $b_4 = 0.857864$) ] $\alpha_\theta = 0.0172$; $\beta/H_* = 316$; $T_* = 96.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 0$, $b_4 = 0.804248$) ] $\alpha_\theta = 0.0333$; $\beta/H_* = 91$; $T_* = 83.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 131.381$, $b_4 = 2.53338$) ] $\alpha_\theta = 0.0115$; $\beta/H_* = 787$; $T_* = 103.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 131.381$, $b_4 = 2.25189$) ] $\alpha_\theta = 0.0305$; $\beta/H_* = 302$; $T_* = 83.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0105$; $\beta/H_* = 1557$; $T_* = 104.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0154$; $\beta/H_* = 941$; $T_* = 96.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 394.144$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0115$; $\beta/H_* = 9009$; $T_* = 100.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 394.144$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0147$; $\beta/H_* = 3281$; $T_* = 94.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 394.144$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0198$; $\beta/H_* = 2227$; $T_* = 88.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 394.144$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0300$; $\beta/H_* = 1512$; $T_* = 79.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.36659$, $b_3 = 394.144$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0570$; $\beta/H_* = 1128$; $T_* = 67.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -394.144$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0372$; $\beta/H_* = 2418$; $T_* = 73.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -394.144$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0618$; $\beta/H_* = 4146$; $T_* = 64.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0103$; $\beta/H_* = 2587$; $T_* = 103.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0123$; $\beta/H_* = 2254$; $T_* = 99.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0153$; $\beta/H_* = 1420$; $T_* = 94.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0205$; $\beta/H_* = 1040$; $T_* = 88.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0314$; $\beta/H_* = 748$; $T_* = 79.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0646$; $\beta/H_* = 428$; $T_* = 66.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.5675$; $\beta/H_* = 170$; $T_* = 39.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 4.35634$) ] $\alpha_\theta = 0.0120$; $\beta/H_* = 1259$; $T_* = 101.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 4.02124$) ] $\alpha_\theta = 0.0176$; $\beta/H_* = 771$; $T_* = 92.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 3.68614$) ] $\alpha_\theta = 0.0337$; $\beta/H_* = 434$; $T_* = 79.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 0$, $b_4 = 2.41274$) ] $\alpha_\theta = 0.0134$; $\beta/H_* = 738$; $T_* = 99.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 0$, $b_4 = 2.14466$) ] $\alpha_\theta = 0.0259$; $\beta/H_* = 323$; $T_* = 85.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 4.59762$) ] $\alpha_\theta = 0.0111$; $\beta/H_* = 1449$; $T_* = 102.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 4.26921$) ] $\alpha_\theta = 0.0151$; $\beta/H_* = 993$; $T_* = 95.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 3.94081$) ] $\alpha_\theta = 0.0243$; $\beta/H_* = 591$; $T_* = 85.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 3.61241$) ] $\alpha_\theta = 0.0615$; $\beta/H_* = 202$; $T_* = 68.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0112$; $\beta/H_* = 2726$; $T_* = 101.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0135$; $\beta/H_* = 1923$; $T_* = 97.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0172$; $\beta/H_* = 1513$; $T_* = 91.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0238$; $\beta/H_* = 984$; $T_* = 84.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0385$; $\beta/H_* = 662$; $T_* = 75.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0260$; $\beta/H_* = 1521$; $T_* = 81.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0363$; $\beta/H_* = 1044$; $T_* = 75.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0587$; $\beta/H_* = 718$; $T_* = 66.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.1342$; $\beta/H_* = 452$; $T_* = 54.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0113$; $\beta/H_* = 2337$; $T_* = 101.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0132$; $\beta/H_* = 1630$; $T_* = 97.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0160$; $\beta/H_* = 1269$; $T_* = 93.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0207$; $\beta/H_* = 1057$; $T_* = 87.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0295$; $\beta/H_* = 713$; $T_* = 80.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0514$; $\beta/H_* = 404$; $T_* = 70.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.1800$; $\beta/H_* = 168$; $T_* = 52.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 4.97528$) ] $\alpha_\theta = 0.0113$; $\beta/H_* = 1335$; $T_* = 101.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 4.64359$) ] $\alpha_\theta = 0.0140$; $\beta/H_* = 1070$; $T_* = 96.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 4.31191$) ] $\alpha_\theta = 0.0187$; $\beta/H_* = 767$; $T_* = 90.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 3.98022$) ] $\alpha_\theta = 0.0290$; $\beta/H_* = 473$; $T_* = 81.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 3.64854$) ] $\alpha_\theta = 0.0674$; $\beta/H_* = 221$; $T_* = 67.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0107$; $\beta/H_* = 2943$; $T_* = 102.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0122$; $\beta/H_* = 2517$; $T_* = 99.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0145$; $\beta/H_* = 1770$; $T_* = 95.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0179$; $\beta/H_* = 1372$; $T_* = 90.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0238$; $\beta/H_* = 854$; $T_* = 84.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0356$; $\beta/H_* = 617$; $T_* = 76.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0702$; $\beta/H_* = 349$; $T_* = 65.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 262.763$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0298$; $\beta/H_* = 1351$; $T_* = 78.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 262.763$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0433$; $\beta/H_* = 951$; $T_* = 71.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 262.763$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0762$; $\beta/H_* = 652$; $T_* = 62.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0304$; $\beta/H_* = 1018$; $T_* = 78.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0423$; $\beta/H_* = 742$; $T_* = 72.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0688$; $\beta/H_* = 524$; $T_* = 64.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.1642$; $\beta/H_* = 304$; $T_* = 51.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0112$; $\beta/H_* = 2654$; $T_* = 100.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0126$; $\beta/H_* = 2212$; $T_* = 97.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0144$; $\beta/H_* = 1973$; $T_* = 94.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0169$; $\beta/H_* = 1438$; $T_* = 91.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0206$; $\beta/H_* = 1154$; $T_* = 87.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0265$; $\beta/H_* = 830$; $T_* = 82.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0375$; $\beta/H_* = 569$; $T_* = 75.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0646$; $\beta/H_* = 364$; $T_* = 66.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.2086$; $\beta/H_* = 152$; $T_* = 49.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 131.381$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0352$; $\beta/H_* = 967$; $T_* = 75.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 131.381$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0514$; $\beta/H_* = 674$; $T_* = 68.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 131.381$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0924$; $\beta/H_* = 450$; $T_* = 59.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.26195$, $b_3 = 131.381$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.3096$; $\beta/H_* = 249$; $T_* = 44.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.5604$, $b_3 = 0$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0701$; $\beta/H_* = 503$; $T_* = 63.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.5604$, $b_3 = 0$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.1369$; $\beta/H_* = 325$; $T_* = 54.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.5604$, $b_3 = 0$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.7203$; $\beta/H_* = 160$; $T_* = 36.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.49226$, $b_3 = 649.179$, $b_4 = 7.53982$) ] $\alpha_\theta = 0.0153$; $\beta/H_* = 399$; $T_* = 104.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.49226$, $b_3 = 649.179$, $b_4 = 7.23823$) ] $\alpha_\theta = 0.0285$; $\beta/H_* = 242$; $T_* = 91.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.49226$, $b_3 = 649.179$, $b_4 = 6.93664$) ] $\alpha_\theta = 0.1264$; $\beta/H_* = 62$; $T_* = 65.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.72788$, $b_3 = -649.179$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0927$; $\beta/H_* = 200$; $T_* = 69.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.72788$, $b_3 = 486.884$, $b_4 = 4.69145$) ] $\alpha_\theta = 0.0267$; $\beta/H_* = 126$; $T_* = 91.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -486.884$, $b_4 = 6.11228$) ] $\alpha_\theta = 0.0144$; $\beta/H_* = 343$; $T_* = 104.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = -486.884$, $b_4 = 5.8576$) ] $\alpha_\theta = 0.0262$; $\beta/H_* = 207$; $T_* = 91.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 324.589$, $b_4 = 3.35103$) ] $\alpha_\theta = 0.0112$; $\beta/H_* = 303$; $T_* = 107.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 324.589$, $b_4 = 3.21699$) ] $\alpha_\theta = 0.0413$; $\beta/H_* = 83$; $T_* = 82.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 486.884$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0133$; $\beta/H_* = 485$; $T_* = 105.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 486.884$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0214$; $\beta/H_* = 317$; $T_* = 95.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 1.9635$, $b_3 = 486.884$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0544$; $\beta/H_* = 114$; $T_* = 77.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = -486.884$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0197$; $\beta/H_* = 427$; $T_* = 96.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = -486.884$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0280$; $\beta/H_* = 363$; $T_* = 89.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = -486.884$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0507$; $\beta/H_* = 192$; $T_* = 78.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = -324.589$, $b_4 = 4.47028$) ] $\alpha_\theta = 0.0137$; $\beta/H_* = 372$; $T_* = 103.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = -324.589$, $b_4 = 4.27592$) ] $\alpha_\theta = 0.0269$; $\beta/H_* = 154$; $T_* = 90.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = -162.295$, $b_4 = 2.01062$) ] $\alpha_\theta = 0.0234$; $\beta/H_* = 88$; $T_* = 92.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = 162.295$, $b_4 = 2.31221$) ] $\alpha_\theta = 0.0138$; $\beta/H_* = 200$; $T_* = 102.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = 324.589$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0119$; $\beta/H_* = 461$; $T_* = 106.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = 324.589$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0226$; $\beta/H_* = 249$; $T_* = 92.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = 486.884$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0414$; $\beta/H_* = 222$; $T_* = 81.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.19911$, $b_3 = 486.884$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0904$; $\beta/H_* = 113$; $T_* = 67.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -324.589$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0105$; $\beta/H_* = 801$; $T_* = 109.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -324.589$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0129$; $\beta/H_* = 614$; $T_* = 105.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -324.589$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0170$; $\beta/H_* = 459$; $T_* = 98.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -324.589$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0257$; $\beta/H_* = 276$; $T_* = 90.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -324.589$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0595$; $\beta/H_* = 110$; $T_* = 74.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -162.295$, $b_4 = 3.51858$) ] $\alpha_\theta = 0.0109$; $\beta/H_* = 475$; $T_* = 107.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = -162.295$, $b_4 = 3.35103$) ] $\alpha_\theta = 0.0169$; $\beta/H_* = 271$; $T_* = 98.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 0$, $b_4 = 1.47445$) ] $\alpha_\theta = 0.0100$; $\beta/H_* = 434$; $T_* = 108.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 0$, $b_4 = 1.40743$) ] $\alpha_\theta = 0.0141$; $\beta/H_* = 217$; $T_* = 101.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 0$, $b_4 = 1.34041$) ] $\alpha_\theta = 0.0273$; $\beta/H_* = 90$; $T_* = 88.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 162.295$, $b_4 = 4.06145$) ] $\alpha_\theta = 0.0112$; $\beta/H_* = 536$; $T_* = 106.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 162.295$, $b_4 = 3.723$) ] $\alpha_\theta = 0.0209$; $\beta/H_* = 250$; $T_* = 93.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0109$; $\beta/H_* = 951$; $T_* = 108.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0124$; $\beta/H_* = 719$; $T_* = 105.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0145$; $\beta/H_* = 677$; $T_* = 101.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0180$; $\beta/H_* = 515$; $T_* = 97.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0243$; $\beta/H_* = 392$; $T_* = 90.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0390$; $\beta/H_* = 232$; $T_* = 81.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.43473$, $b_3 = 324.589$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.1407$; $\beta/H_* = 43$; $T_* = 60.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -324.589$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0359$; $\beta/H_* = 285$; $T_* = 83.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -324.589$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0566$; $\beta/H_* = 205$; $T_* = 74.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -324.589$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.1736$; $\beta/H_* = 65$; $T_* = 57.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -162.295$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0101$; $\beta/H_* = 718$; $T_* = 109.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -162.295$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0123$; $\beta/H_* = 579$; $T_* = 105.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -162.295$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0160$; $\beta/H_* = 468$; $T_* = 99.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -162.295$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0240$; $\beta/H_* = 267$; $T_* = 90.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = -162.295$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0555$; $\beta/H_* = 99$; $T_* = 75.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 0$, $b_4 = 3.04609$) ] $\alpha_\theta = 0.0146$; $\beta/H_* = 363$; $T_* = 100.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 0$, $b_4 = 2.70763$) ] $\alpha_\theta = 0.0377$; $\beta/H_* = 133$; $T_* = 81.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 162.295$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0106$; $\beta/H_* = 869$; $T_* = 108.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 162.295$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0120$; $\beta/H_* = 783$; $T_* = 105.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 162.295$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0140$; $\beta/H_* = 615$; $T_* = 101.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 162.295$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0172$; $\beta/H_* = 497$; $T_* = 97.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 162.295$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0230$; $\beta/H_* = 352$; $T_* = 91.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 162.295$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0371$; $\beta/H_* = 186$; $T_* = 81.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.67035$, $b_3 = 324.589$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.1132$; $\beta/H_* = 112$; $T_* = 62.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = -162.295$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0180$; $\beta/H_* = 639$; $T_* = 96.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = -162.295$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0213$; $\beta/H_* = 533$; $T_* = 93.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = -162.295$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0263$; $\beta/H_* = 367$; $T_* = 88.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = -162.295$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0357$; $\beta/H_* = 298$; $T_* = 82.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = -162.295$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0578$; $\beta/H_* = 179$; $T_* = 73.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0101$; $\beta/H_* = 987$; $T_* = 108.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0111$; $\beta/H_* = 873$; $T_* = 106.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0123$; $\beta/H_* = 788$; $T_* = 104.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0142$; $\beta/H_* = 607$; $T_* = 100.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0170$; $\beta/H_* = 496$; $T_* = 96.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0221$; $\beta/H_* = 353$; $T_* = 91.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0331$; $\beta/H_* = 223$; $T_* = 83.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 0$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0839$; $\beta/H_* = 82$; $T_* = 67.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 162.295$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0296$; $\beta/H_* = 383$; $T_* = 85.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 162.295$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0387$; $\beta/H_* = 305$; $T_* = 80.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 2.90597$, $b_3 = 162.295$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0575$; $\beta/H_* = 196$; $T_* = 73.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 3.14159$, $b_3 = 0$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0226$; $\beta/H_* = 580$; $T_* = 90.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 3.14159$, $b_3 = 0$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0264$; $\beta/H_* = 447$; $T_* = 87.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.01$, $a_2 = 3.14159$, $b_3 = 0$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.1750$; $\beta/H_* = 31$; $T_* = 56.1 \, \mathrm{GeV}$; [plot]
[plot all points with these parameters]
Results for scenario: Not probed by HL-LHC
NB: using $v_\mathrm{w} = 1.0$, $T_* = 50.0 \, \mathrm{GeV}$, $g_* = 107.75$.
[Back to top] [Home]