PTPlot: Singlet scalar benchmark points
Benchmark points for the SM extended with a general real singlet scalar field, $S$ (supplied by J. Kozaczuk).
$$ \Delta V = b_1 S + \frac{1}{2} b_2 S^2 + \frac{1}{2} a_1 S \left| H \right|^2 + \frac{1}{2} a_2 S^2 \left| H \right|^2 + \frac{1}{3} b_3 S^3 + \frac{1}{4} b_4 S^4. $$ In the mass basis, the mass-ordered eigenstates are $m_{1,2}$. The mixing angle between $S$ and $H$ is denoted as $\theta$. Masses considered are $m_2 = 170,\, 240\, \mathrm{GeV}$. We show results for points with $m_2= 170,\, 240\, \mathrm{GeV}$ and $\sin \theta = 0.1$, which are likely to be probed by direct searches at the high-luminosity LHC with $3\, \mathrm{ab}^{-1}$, and $\sin\theta = 0.01$, which will likely remain undetected at colliders. The various parameters in the potential are scanned over as described in the text. See also JHEP 1708 (2017) 096 [http://arxiv.org/abs/arXiv:1704.05844] for more details.
General parameters used for plotting: $v_\mathrm{w} = 1.0$, $T_* = 50.0 \, \mathrm{GeV}$ (when all points are plotted), $g_* = 107.75$.
Mission profile: Science Requirements Document (3 years)
This model has the following scenarios:
- Not probed by HL-LHC: Set of points that are not probed by HL-LHC [plot scenario]
- Will be probed by HL-LHC: Set of points that will be probed by HL-LHC [plot scenario]
Full list of points:
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.471239$, $b_3 = 394.144$, $b_4 = 2.57359$) ] $\alpha_\theta = 0.0137$; $\beta/H_* = 1008$; $T_* = 102.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.471239$, $b_3 = 394.144$, $b_4 = 2.46636$) ] $\alpha_\theta = 0.0235$; $\beta/H_* = 3010$; $T_* = 89.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 3.18348$) ] $\alpha_\theta = 0.0144$; $\beta/H_* = 715$; $T_* = 102.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 3.05614$) ] $\alpha_\theta = 0.0258$; $\beta/H_* = 617$; $T_* = 89.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = -394.144$, $b_4 = 2.9288$) ] $\alpha_\theta = 0.0596$; $\beta/H_* = 537$; $T_* = 72.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = 262.763$, $b_4 = 1.84977$) ] $\alpha_\theta = 0.0188$; $\beta/H_* = 378$; $T_* = 95.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.86039$) ] $\alpha_\theta = 0.0136$; $\beta/H_* = 1251$; $T_* = 99.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.64592$) ] $\alpha_\theta = 0.0233$; $\beta/H_* = 973$; $T_* = 87.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.76969$, $b_3 = 394.144$, $b_4 = 3.43146$) ] $\alpha_\theta = 0.0553$; $\beta/H_* = 864$; $T_* = 70.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 4.78527$) ] $\alpha_\theta = 0.0105$; $\beta/H_* = 1246$; $T_* = 107.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 4.5574$) ] $\alpha_\theta = 0.0150$; $\beta/H_* = 980$; $T_* = 99.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 4.32953$) ] $\alpha_\theta = 0.0245$; $\beta/H_* = 781$; $T_* = 88.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 4.10166$) ] $\alpha_\theta = 0.0550$; $\beta/H_* = 529$; $T_* = 72.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -394.144$, $b_4 = 3.87379$) ] $\alpha_\theta = 0.3335$; $\beta/H_* = 2263$; $T_* = 45.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -262.763$, $b_4 = 2.51327$) ] $\alpha_\theta = 0.0103$; $\beta/H_* = 661$; $T_* = 108.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = -262.763$, $b_4 = 2.31221$) ] $\alpha_\theta = 0.0423$; $\beta/H_* = 209$; $T_* = 80.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 0$, $b_4 = 0.167552$) ] $\alpha_\theta = 0.0209$; $\beta/H_* = 88$; $T_* = 94.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 131.381$, $b_4 = 1.44765$) ] $\alpha_\theta = 0.0134$; $\beta/H_* = 539$; $T_* = 100.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 131.381$, $b_4 = 1.36722$) ] $\alpha_\theta = 0.0259$; $\beta/H_* = 270$; $T_* = 87.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 262.763$, $b_4 = 3.31028$) ] $\alpha_\theta = 0.0102$; $\beta/H_* = 1139$; $T_* = 105.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 262.763$, $b_4 = 3.03443$) ] $\alpha_\theta = 0.0195$; $\beta/H_* = 634$; $T_* = 91.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 5.793$) ] $\alpha_\theta = 0.0118$; $\beta/H_* = 3031$; $T_* = 100.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 5.47116$) ] $\alpha_\theta = 0.0164$; $\beta/H_* = 2089$; $T_* = 92.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 5.14933$) ] $\alpha_\theta = 0.0262$; $\beta/H_* = 1480$; $T_* = 82.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.06814$, $b_3 = 394.144$, $b_4 = 4.8275$) ] $\alpha_\theta = 0.0573$; $\beta/H_* = 1143$; $T_* = 67.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0109$; $\beta/H_* = 2451$; $T_* = 104.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0143$; $\beta/H_* = 1834$; $T_* = 97.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0204$; $\beta/H_* = 1295$; $T_* = 89.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0350$; $\beta/H_* = 911$; $T_* = 78.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -394.144$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0955$; $\beta/H_* = 604$; $T_* = 61.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -262.763$, $b_4 = 4.07486$) ] $\alpha_\theta = 0.0102$; $\beta/H_* = 1090$; $T_* = 107.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -262.763$, $b_4 = 3.86039$) ] $\alpha_\theta = 0.0147$; $\beta/H_* = 687$; $T_* = 99.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -262.763$, $b_4 = 3.64592$) ] $\alpha_\theta = 0.0246$; $\beta/H_* = 456$; $T_* = 88.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -262.763$, $b_4 = 3.43146$) ] $\alpha_\theta = 0.0659$; $\beta/H_* = 242$; $T_* = 69.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -131.381$, $b_4 = 2.06424$) ] $\alpha_\theta = 0.0127$; $\beta/H_* = 520$; $T_* = 103.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -131.381$, $b_4 = 1.97041$) ] $\alpha_\theta = 0.0204$; $\beta/H_* = 316$; $T_* = 93.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = -131.381$, $b_4 = 1.87658$) ] $\alpha_\theta = 0.0486$; $\beta/H_* = 139$; $T_* = 76.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 0$, $b_4 = 1.17956$) ] $\alpha_\theta = 0.0140$; $\beta/H_* = 558$; $T_* = 98.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 0$, $b_4 = 1.07233$) ] $\alpha_\theta = 0.0250$; $\beta/H_* = 291$; $T_* = 87.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 131.381$, $b_4 = 3.07383$) ] $\alpha_\theta = 0.0102$; $\beta/H_* = 1285$; $T_* = 104.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 131.381$, $b_4 = 2.81768$) ] $\alpha_\theta = 0.0156$; $\beta/H_* = 673$; $T_* = 95.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 131.381$, $b_4 = 2.56153$) ] $\alpha_\theta = 0.0335$; $\beta/H_* = 361$; $T_* = 80.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 5.35495$) ] $\alpha_\theta = 0.0106$; $\beta/H_* = 1877$; $T_* = 102.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 5.03995$) ] $\alpha_\theta = 0.0137$; $\beta/H_* = 1495$; $T_* = 96.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 4.72496$) ] $\alpha_\theta = 0.0199$; $\beta/H_* = 956$; $T_* = 88.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 4.40996$) ] $\alpha_\theta = 0.0359$; $\beta/H_* = 596$; $T_* = 77.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.36659$, $b_3 = 262.763$, $b_4 = 4.09496$) ] $\alpha_\theta = 0.1359$; $\beta/H_* = 246$; $T_* = 55.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -394.144$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0200$; $\beta/H_* = 2622$; $T_* = 88.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -394.144$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0276$; $\beta/H_* = 2082$; $T_* = 81.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -394.144$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0435$; $\beta/H_* = 1556$; $T_* = 72.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -394.144$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0907$; $\beta/H_* = 920$; $T_* = 60.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 6.25463$) ] $\alpha_\theta = 0.0106$; $\beta/H_* = 1666$; $T_* = 104.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.97033$) ] $\alpha_\theta = 0.0128$; $\beta/H_* = 1272$; $T_* = 100.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.68603$) ] $\alpha_\theta = 0.0165$; $\beta/H_* = 1048$; $T_* = 94.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.40173$) ] $\alpha_\theta = 0.0231$; $\beta/H_* = 799$; $T_* = 87.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 5.11743$) ] $\alpha_\theta = 0.0387$; $\beta/H_* = 487$; $T_* = 77.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -262.763$, $b_4 = 4.83313$) ] $\alpha_\theta = 0.1043$; $\beta/H_* = 245$; $T_* = 60.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 3.86039$) ] $\alpha_\theta = 0.0105$; $\beta/H_* = 1020$; $T_* = 105.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 3.64592$) ] $\alpha_\theta = 0.0139$; $\beta/H_* = 698$; $T_* = 99.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 3.43146$) ] $\alpha_\theta = 0.0206$; $\beta/H_* = 479$; $T_* = 91.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = -131.381$, $b_4 = 3.21699$) ] $\alpha_\theta = 0.0394$; $\beta/H_* = 315$; $T_* = 78.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 0$, $b_4 = 3.21699$) ] $\alpha_\theta = 0.0102$; $\beta/H_* = 1217$; $T_* = 103.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 0$, $b_4 = 2.68083$) ] $\alpha_\theta = 0.0205$; $\beta/H_* = 549$; $T_* = 88.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 0$, $b_4 = 2.41274$) ] $\alpha_\theta = 0.0445$; $\beta/H_* = 253$; $T_* = 74.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 5.46888$) ] $\alpha_\theta = 0.0101$; $\beta/H_* = 2016$; $T_* = 103.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 5.14719$) ] $\alpha_\theta = 0.0122$; $\beta/H_* = 1478$; $T_* = 98.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 4.82549$) ] $\alpha_\theta = 0.0157$; $\beta/H_* = 1201$; $T_* = 93.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 4.50379$) ] $\alpha_\theta = 0.0225$; $\beta/H_* = 774$; $T_* = 85.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 131.381$, $b_4 = 4.18209$) ] $\alpha_\theta = 0.0411$; $\beta/H_* = 423$; $T_* = 74.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0114$; $\beta/H_* = 7599$; $T_* = 99.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0136$; $\beta/H_* = 3297$; $T_* = 95.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0167$; $\beta/H_* = 2120$; $T_* = 90.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0219$; $\beta/H_* = 1581$; $T_* = 84.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0315$; $\beta/H_* = 1073$; $T_* = 77.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0551$; $\beta/H_* = 668$; $T_* = 67.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.66504$, $b_3 = 262.763$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.1663$; $\beta/H_* = 395$; $T_* = 51.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0155$; $\beta/H_* = 1910$; $T_* = 94.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0192$; $\beta/H_* = 1472$; $T_* = 89.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0253$; $\beta/H_* = 1075$; $T_* = 84.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0370$; $\beta/H_* = 771$; $T_* = 76.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0670$; $\beta/H_* = 505$; $T_* = 66.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -262.763$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.2377$; $\beta/H_* = 256$; $T_* = 48.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 6.29994$) ] $\alpha_\theta = 0.0108$; $\beta/H_* = 1944$; $T_* = 103.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.98494$) ] $\alpha_\theta = 0.0129$; $\beta/H_* = 1386$; $T_* = 99.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.66995$) ] $\alpha_\theta = 0.0162$; $\beta/H_* = 1102$; $T_* = 94.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.35495$) ] $\alpha_\theta = 0.0220$; $\beta/H_* = 694$; $T_* = 88.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 5.03995$) ] $\alpha_\theta = 0.0348$; $\beta/H_* = 484$; $T_* = 79.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = -131.381$, $b_4 = 4.72496$) ] $\alpha_\theta = 0.0826$; $\beta/H_* = 305$; $T_* = 64.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0100$; $\beta/H_* = 2382$; $T_* = 102.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0115$; $\beta/H_* = 2142$; $T_* = 99.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0138$; $\beta/H_* = 1520$; $T_* = 95.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0172$; $\beta/H_* = 1000$; $T_* = 90.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0236$; $\beta/H_* = 800$; $T_* = 84.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0377$; $\beta/H_* = 492$; $T_* = 75.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 0$, $b_4 = 4.06145$) ] $\alpha_\theta = 0.0966$; $\beta/H_* = 197$; $T_* = 60.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0113$; $\beta/H_* = 4381$; $T_* = 99.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0129$; $\beta/H_* = 3424$; $T_* = 96.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0151$; $\beta/H_* = 2265$; $T_* = 92.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0183$; $\beta/H_* = 1708$; $T_* = 88.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0234$; $\beta/H_* = 1176$; $T_* = 83.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0326$; $\beta/H_* = 808$; $T_* = 76.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0532$; $\beta/H_* = 587$; $T_* = 68.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 131.381$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.1322$; $\beta/H_* = 302$; $T_* = 54.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 262.763$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0639$; $\beta/H_* = 1234$; $T_* = 63.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.9635$, $b_3 = 262.763$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.1342$; $\beta/H_* = 976$; $T_* = 52.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0175$; $\beta/H_* = 1707$; $T_* = 91.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0215$; $\beta/H_* = 1123$; $T_* = 87.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0280$; $\beta/H_* = 835$; $T_* = 81.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0402$; $\beta/H_* = 600$; $T_* = 74.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0702$; $\beta/H_* = 396$; $T_* = 65.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = -131.381$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.2306$; $\beta/H_* = 184$; $T_* = 48.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0154$; $\beta/H_* = 2134$; $T_* = 91.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0180$; $\beta/H_* = 1850$; $T_* = 88.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0217$; $\beta/H_* = 1422$; $T_* = 84.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0275$; $\beta/H_* = 1000$; $T_* = 79.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0376$; $\beta/H_* = 706$; $T_* = 74.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0590$; $\beta/H_* = 484$; $T_* = 66.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.1293$; $\beta/H_* = 277$; $T_* = 54.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 131.381$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0831$; $\beta/H_* = 671$; $T_* = 59.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 170\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 131.381$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.1970$; $\beta/H_* = 469$; $T_* = 48.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.502655$, $b_3 = 811.473$, $b_4 = 8.21003$) ] $\alpha_\theta = 0.0142$; $\beta/H_* = 746$; $T_* = 106.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 0.502655$, $b_3 = 811.473$, $b_4 = 7.88163$) ] $\alpha_\theta = 0.0229$; $\beta/H_* = 1020$; $T_* = 95.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.00531$, $b_3 = 649.179$, $b_4 = 5.69675$) ] $\alpha_\theta = 0.0278$; $\beta/H_* = 185$; $T_* = 91.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.25664$, $b_3 = 649.179$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0139$; $\beta/H_* = 639$; $T_* = 103.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.25664$, $b_3 = 649.179$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0196$; $\beta/H_* = 484$; $T_* = 96.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.25664$, $b_3 = 649.179$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0333$; $\beta/H_* = 259$; $T_* = 85.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.25664$, $b_3 = 649.179$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.1071$; $\beta/H_* = 104$; $T_* = 65.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.50796$, $b_3 = 486.884$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0169$; $\beta/H_* = 364$; $T_* = 98.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 162.295$, $b_4 = 1.39403$) ] $\alpha_\theta = 0.0131$; $\beta/H_* = 409$; $T_* = 102.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 324.589$, $b_4 = 3.723$) ] $\alpha_\theta = 0.0133$; $\beta/H_* = 510$; $T_* = 101.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 324.589$, $b_4 = 3.38454$) ] $\alpha_\theta = 0.0863$; $\beta/H_* = 30$; $T_* = 67.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 486.884$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0123$; $\beta/H_* = 804$; $T_* = 104.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 486.884$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0145$; $\beta/H_* = 752$; $T_* = 100.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 486.884$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0181$; $\beta/H_* = 529$; $T_* = 96.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 486.884$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0249$; $\beta/H_* = 409$; $T_* = 89.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 1.75929$, $b_3 = 486.884$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0411$; $\beta/H_* = 230$; $T_* = 79.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 0$, $b_4 = 0.589782$) ] $\alpha_\theta = 0.0135$; $\beta/H_* = 323$; $T_* = 100.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 0$, $b_4 = 0.516059$) ] $\alpha_\theta = 0.0321$; $\beta/H_* = 90$; $T_* = 84.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 162.295$, $b_4 = 2.70763$) ] $\alpha_\theta = 0.0181$; $\beta/H_* = 321$; $T_* = 94.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 324.589$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0115$; $\beta/H_* = 855$; $T_* = 104.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 324.589$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0139$; $\beta/H_* = 671$; $T_* = 100.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 324.589$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0180$; $\beta/H_* = 480$; $T_* = 94.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 324.589$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0271$; $\beta/H_* = 319$; $T_* = 86.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.01062$, $b_3 = 324.589$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0632$; $\beta/H_* = 125$; $T_* = 71.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 2.36918$) ] $\alpha_\theta = 0.0102$; $\beta/H_* = 891$; $T_* = 105.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 0$, $b_4 = 2.03073$) ] $\alpha_\theta = 0.0164$; $\beta/H_* = 465$; $T_* = 95.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 162.295$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0107$; $\beta/H_* = 948$; $T_* = 105.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 162.295$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0124$; $\beta/H_* = 876$; $T_* = 102.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 162.295$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0152$; $\beta/H_* = 584$; $T_* = 97.6 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 162.295$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0204$; $\beta/H_* = 392$; $T_* = 91.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 162.295$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0329$; $\beta/H_* = 252$; $T_* = 82.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 162.295$, $b_4 = 4.06145$) ] $\alpha_\theta = 0.1522$; $\beta/H_* = 31$; $T_* = 57.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 324.589$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0264$; $\beta/H_* = 497$; $T_* = 86.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 324.589$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0340$; $\beta/H_* = 368$; $T_* = 81.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 324.589$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0487$; $\beta/H_* = 256$; $T_* = 74.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.26195$, $b_3 = 324.589$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0938$; $\beta/H_* = 139$; $T_* = 64.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = -486.884$, $b_4 = 7.87493$) ] $\alpha_\theta = 0.0321$; $\beta/H_* = 242$; $T_* = 89.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = -486.884$, $b_4 = 7.55993$) ] $\alpha_\theta = 0.0749$; $\beta/H_* = 94$; $T_* = 73.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 0$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0107$; $\beta/H_* = 1179$; $T_* = 104.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 0$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0120$; $\beta/H_* = 827$; $T_* = 102.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 0$, $b_4 = 4.73836$) ] $\alpha_\theta = 0.0140$; $\beta/H_* = 771$; $T_* = 98.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 0$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0172$; $\beta/H_* = 553$; $T_* = 94.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 0$, $b_4 = 4.06145$) ] $\alpha_\theta = 0.0229$; $\beta/H_* = 387$; $T_* = 88.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 0$, $b_4 = 3.723$) ] $\alpha_\theta = 0.0372$; $\beta/H_* = 230$; $T_* = 79.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0176$; $\beta/H_* = 787$; $T_* = 94.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0200$; $\beta/H_* = 617$; $T_* = 91.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0236$; $\beta/H_* = 581$; $T_* = 88.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0291$; $\beta/H_* = 427$; $T_* = 83.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0388$; $\beta/H_* = 326$; $T_* = 78.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0612$; $\beta/H_* = 215$; $T_* = 70.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.51327$, $b_3 = 162.295$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.1848$; $\beta/H_* = 55$; $T_* = 54.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = -162.295$, $b_4 = 5.07681$) ] $\alpha_\theta = 0.0115$; $\beta/H_* = 960$; $T_* = 102.8 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = -162.295$, $b_4 = 4.39991$) ] $\alpha_\theta = 0.0141$; $\beta/H_* = 762$; $T_* = 98.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = -162.295$, $b_4 = 4.06145$) ] $\alpha_\theta = 0.0164$; $\beta/H_* = 618$; $T_* = 94.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = -162.295$, $b_4 = 3.723$) ] $\alpha_\theta = 0.0201$; $\beta/H_* = 468$; $T_* = 90.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = -162.295$, $b_4 = 3.38454$) ] $\alpha_\theta = 0.0266$; $\beta/H_* = 343$; $T_* = 85.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = -162.295$, $b_4 = 3.04609$) ] $\alpha_\theta = 0.0437$; $\beta/H_* = 172$; $T_* = 76.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0166$; $\beta/H_* = 870$; $T_* = 95.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0183$; $\beta/H_* = 782$; $T_* = 93.0 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0206$; $\beta/H_* = 608$; $T_* = 90.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0237$; $\beta/H_* = 569$; $T_* = 87.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0284$; $\beta/H_* = 461$; $T_* = 83.9 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0361$; $\beta/H_* = 336$; $T_* = 79.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 6.09218$) ] $\alpha_\theta = 0.0509$; $\beta/H_* = 253$; $T_* = 73.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 2.7646$, $b_3 = 0$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0930$; $\beta/H_* = 105$; $T_* = 63.4 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.0176$; $\beta/H_* = 883$; $T_* = 93.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 7.78445$) ] $\alpha_\theta = 0.0192$; $\beta/H_* = 785$; $T_* = 91.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 7.44599$) ] $\alpha_\theta = 0.0211$; $\beta/H_* = 707$; $T_* = 89.7 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 7.10754$) ] $\alpha_\theta = 0.0237$; $\beta/H_* = 555$; $T_* = 87.3 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 6.76908$) ] $\alpha_\theta = 0.0272$; $\beta/H_* = 502$; $T_* = 84.5 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 6.43063$) ] $\alpha_\theta = 0.0324$; $\beta/H_* = 373$; $T_* = 81.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 5.75372$) ] $\alpha_\theta = 0.0565$; $\beta/H_* = 227$; $T_* = 71.1 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = -162.295$, $b_4 = 5.41527$) ] $\alpha_\theta = 0.0994$; $\beta/H_* = 96$; $T_* = 62.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.01593$, $b_3 = 0$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.2404$; $\beta/H_* = 79$; $T_* = 50.2 \, \mathrm{GeV}$; [plot]
- [ $m_2 = 240\, \mathrm{GeV}$, $\sin \theta = 0.1$, $a_2 = 3.26726$, $b_3 = -162.295$, $b_4 = 8.1229$) ] $\alpha_\theta = 0.1983$; $\beta/H_* = 89$; $T_* = 52.4 \, \mathrm{GeV}$; [plot]
[plot all points with these parameters]
Results for scenario: Will be probed by HL-LHC
NB: using $v_\mathrm{w} = 1.0$, $T_* = 50.0 \, \mathrm{GeV}$, $g_* = 107.75$.
[Back to top] [Home]