PTPlot: 2HDM benchmark points
Benchmark points for the two-Higgs-doublet model with a softly-broken $Z_2$ symmetry (supplied by G. Dorsch and J.M. No).
Benchmark points for the two-Higgs-doublet model (2HDM) with a softly-broken $Z_{2}$ symmetry, with scalar potential \begin{eqnarray} V(H_1,H_2) & = & \mu^2_1 \left|H_1\right|^2 + \mu^2_2\left|H_2\right|^2 - \mu^2 \left[H_1^{\dagger}H_2+\mathrm{h.c.}\right] +\frac{\lambda_1}{2}\left|H_1\right|^4 +\frac{\lambda_2}{2}\left|H_2\right|^4 \nonumber \\ & & + \lambda_3 \left|H_1\right|^2\left|H_2\right|^2 +\lambda_4 \left|H_1^{\dagger}H_2\right|^2 + \frac{\lambda_5}{2}\left[\left(H_1^{\dagger}H_2\right)^2+\mathrm{h.c.}\right] \, , \nonumber \end{eqnarray} In the mass basis, there are three new physical states in addition to the 125 GeV Higgs $h$: a charged scalar $H^{\pm}$ and two neutral states $H_0$, $A_0$. Apart from their masses, the 2HDM features as free parameters two angles ($\beta$ and $\alpha$) and $\mu^2$. In the following results we consider $m_{H^{\pm}} = m_{A_0}$, $\mathrm{cos} (\beta - \alpha) = 0$ (the 2HDM alignment limit) an fix for convenience $\mu^2 (\mathrm{tan} \beta + \mathrm{tan}^{-1} \beta) = m_{H_0}^2$. Results are shown for benchmarks in $m_{H_0} \in [180\,\mathrm{GeV},\,\,450\,\mathrm{GeV}]$ and $m_{A_0} \in [m_{H_0}+ 150\,\mathrm{GeV} ,\,\,m_{H_0} + 350\,\mathrm{GeV}]$.
General parameters used for plotting: $v_\mathrm{w} = 0.7$, $T_* = 50.0 \, \mathrm{GeV}$ (when all points are plotted), $g_* = 106.75$.
Mission profile: Science Requirements Document (3 years)
This model has the following scenarios:
- Set 1: 2HDM points which are currently allowed both for Type I and Type II 2HDM. For Type II, these will be probed by the LHC in the future, while for Type I the LHC will not be able to exclude these benchmarks, depending on the value of $\tan\beta$ (which does not influence the strength of the PT). [plot scenario]
- Set 2: 2HDM points which are currently allowed for Type I 2HDM, but excluded for Type II 2HDM, by LHC searches. [plot scenario]
Full list of points:
- [ $(m_H,m_A) = (450,625) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0048$; $\beta/H_* = 44120$; $T_* = 117.1 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,640) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0076$; $\beta/H_* = 16724$; $T_* = 109.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,645) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0087$; $\beta/H_* = 12708$; $T_* = 106.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,648) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0094$; $\beta/H_* = 10692$; $T_* = 104.5 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,650) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0099$; $\beta/H_* = 9512$; $T_* = 103.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,653) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0107$; $\beta/H_* = 8064$; $T_* = 101.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,655) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0113$; $\beta/H_* = 7220$; $T_* = 99.9 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,660) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0130$; $\beta/H_* = 5474$; $T_* = 96.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,665) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0151$; $\beta/H_* = 4135$; $T_* = 92.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,670) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0179$; $\beta/H_* = 3074$; $T_* = 87.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,675) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0219$; $\beta/H_* = 2219$; $T_* = 82.7 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,685) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0399$; $\beta/H_* = 904$; $T_* = 69.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,690) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0698$; $\beta/H_* = 601$; $T_* = 59.6 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,692) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0957$; $\beta/H_* = 398$; $T_* = 54.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (450,695) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.2153$; $\beta/H_* = 159$; $T_* = 44.4 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,600) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0089$; $\beta/H_* = 13020$; $T_* = 106.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,610) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0114$; $\beta/H_* = 7705$; $T_* = 100.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,615) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0129$; $\beta/H_* = 5950$; $T_* = 97.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,620) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0148$; $\beta/H_* = 4579$; $T_* = 93.4 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,622) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0157$; $\beta/H_* = 4111$; $T_* = 91.9 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,624) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0167$; $\beta/H_* = 3683$; $T_* = 90.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,625) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0172$; $\beta/H_* = 3483$; $T_* = 89.5 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,628) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0190$; $\beta/H_* = 2926$; $T_* = 86.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,630) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0204$; $\beta/H_* = 2591$; $T_* = 85.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,632) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0221$; $\beta/H_* = 2281$; $T_* = 83.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,635) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0251$; $\beta/H_* = 1855$; $T_* = 79.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,642) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0377$; $\beta/H_* = 991$; $T_* = 70.6 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,644) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0449$; $\beta/H_* = 904$; $T_* = 67.4 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,645) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0493$; $\beta/H_* = 762$; $T_* = 65.7 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,646) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0547$; $\beta/H_* = 716$; $T_* = 63.9 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,647) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0611$; $\beta/H_* = 598$; $T_* = 62.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,648) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0688$; $\beta/H_* = 570$; $T_* = 60.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,649) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0789$; $\beta/H_* = 491$; $T_* = 57.9 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,651) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1093$; $\beta/H_* = 341$; $T_* = 53.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (400,652) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1364$; $\beta/H_* = 275$; $T_* = 50.0 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (300,525) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0128$; $\beta/H_* = 7432$; $T_* = 99.1 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (300,540) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0179$; $\beta/H_* = 3815$; $T_* = 90.1 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (300,560) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0372$; $\beta/H_* = 1153$; $T_* = 71.9 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (300,570) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0889$; $\beta/H_* = 441$; $T_* = 56.5 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (300,572) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1233$; $\beta/H_* = 322$; $T_* = 51.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (300,574) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.2095$; $\beta/H_* = 160$; $T_* = 45.1 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (250,520) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0356$; $\beta/H_* = 1324$; $T_* = 73.7 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (250,525) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0469$; $\beta/H_* = 978$; $T_* = 68.1 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (250,530) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0678$; $\beta/H_* = 661$; $T_* = 61.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (250,535) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1271$; $\beta/H_* = 321$; $T_* = 51.7 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (250,537) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.2076$; $\beta/H_* = 164$; $T_* = 45.4 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,503) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.2462$; $\beta/H_* = 126$; $T_* = 43.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,502) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.1803$; $\beta/H_* = 210$; $T_* = 47.5 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,501) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.1451$; $\beta/H_* = 279$; $T_* = 50.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,500) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.1227$; $\beta/H_* = 350$; $T_* = 52.6 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,499) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.1067$; $\beta/H_* = 418$; $T_* = 54.6 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,490) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.0510$; $\beta/H_* = 985$; $T_* = 67.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,480) \, \mathrm{GeV}$, $\tan \beta = 2$ ] $\alpha_\theta = 0.0326$; $\beta/H_* = 1644$; $T_* = 76.7 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,500) \, \mathrm{GeV}$, $\tan \beta = 10$ ] $\alpha_\theta = 0.1227$; $\beta/H_* = 349$; $T_* = 52.6 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (200,500) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1227$; $\beta/H_* = 348$; $T_* = 52.6 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,480) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0644$; $\beta/H_* = 778$; $T_* = 63.2 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,482) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0743$; $\beta/H_* = 677$; $T_* = 60.7 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,484) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.0883$; $\beta/H_* = 546$; $T_* = 57.8 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,486) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1094$; $\beta/H_* = 417$; $T_* = 54.5 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,488) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.1464$; $\beta/H_* = 283$; $T_* = 50.3 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,490) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.2352$; $\beta/H_* = 158$; $T_* = 44.5 \, \mathrm{GeV}$; [plot]
- [ $(m_H,m_A) = (180,491) \, \mathrm{GeV}$, $\tan \beta = 30$ ] $\alpha_\theta = 0.4460$; $\beta/H_* = 17$; $T_* = 37.9 \, \mathrm{GeV}$; [plot]
[plot all points with these parameters]
[Back to top] [Home]