PTPlot: 2HDM benchmark points
Benchmark points for the two-Higgs-doublet model with a softly-broken Z2 symmetry (supplied by G. Dorsch and J.M. No).
Benchmark points for the two-Higgs-doublet model (2HDM) with a softly-broken Z2 symmetry, with scalar potential
V(H1,H2)=μ21|H1|2+μ22|H2|2−μ2[H†1H2+h.c.]+λ12|H1|4+λ22|H2|4+λ3|H1|2|H2|2+λ4|H†1H2|2+λ52[(H†1H2)2+h.c.],
In the mass basis, there are three new physical states in addition to the 125 GeV Higgs h:
a charged scalar H± and two neutral states H0, A0. Apart from their masses, the 2HDM features as free
parameters two angles (β and α) and μ2. In the following results we consider mH±=mA0,
cos(β−α)=0 (the 2HDM alignment limit) an fix for convenience μ2(tanβ+tan−1β)=m2H0.
Results are shown for benchmarks in mH0∈[180GeV,450GeV] and
mA0∈[mH0+150GeV,mH0+350GeV].
General parameters used for plotting:
vw=0.7,
T∗=50.0GeV (when all points
are plotted),
g∗=106.75.
Mission profile: Science Requirements Document (3 years)
This model has the following scenarios:
-
Set 1:
2HDM points which are currently allowed both for Type I and Type II 2HDM. For Type II, these will be probed by the LHC in the future, while for Type I the LHC will not be able to exclude these benchmarks, depending on the value of tanβ (which does not influence the strength of the PT).
[plot scenario]
-
Set 2:
2HDM points which are currently allowed for Type I 2HDM, but excluded for Type II 2HDM, by LHC searches.
[plot scenario]
Full list of points:
[Show list of points]
-
[ (mH,mA)=(300,525)GeV, tanβ=30 ]
αθ=0.0128;
β/H∗=7432;
T∗=99.1GeV;
[plot]
-
[ (mH,mA)=(300,540)GeV, tanβ=30 ]
αθ=0.0179;
β/H∗=3815;
T∗=90.1GeV;
[plot]
-
[ (mH,mA)=(300,560)GeV, tanβ=30 ]
αθ=0.0372;
β/H∗=1153;
T∗=71.9GeV;
[plot]
-
[ (mH,mA)=(300,570)GeV, tanβ=30 ]
αθ=0.0889;
β/H∗=441;
T∗=56.5GeV;
[plot]
-
[ (mH,mA)=(300,572)GeV, tanβ=30 ]
αθ=0.1233;
β/H∗=322;
T∗=51.8GeV;
[plot]
-
[ (mH,mA)=(300,574)GeV, tanβ=30 ]
αθ=0.2095;
β/H∗=160;
T∗=45.1GeV;
[plot]
-
[ (mH,mA)=(250,520)GeV, tanβ=30 ]
αθ=0.0356;
β/H∗=1324;
T∗=73.7GeV;
[plot]
-
[ (mH,mA)=(250,525)GeV, tanβ=30 ]
αθ=0.0469;
β/H∗=978;
T∗=68.1GeV;
[plot]
-
[ (mH,mA)=(250,530)GeV, tanβ=30 ]
αθ=0.0678;
β/H∗=661;
T∗=61.3GeV;
[plot]
-
[ (mH,mA)=(250,535)GeV, tanβ=30 ]
αθ=0.1271;
β/H∗=321;
T∗=51.7GeV;
[plot]
-
[ (mH,mA)=(250,537)GeV, tanβ=30 ]
αθ=0.2076;
β/H∗=164;
T∗=45.4GeV;
[plot]
-
[ (mH,mA)=(200,503)GeV, tanβ=2 ]
αθ=0.2462;
β/H∗=126;
T∗=43.8GeV;
[plot]
-
[ (mH,mA)=(200,502)GeV, tanβ=2 ]
αθ=0.1803;
β/H∗=210;
T∗=47.5GeV;
[plot]
-
[ (mH,mA)=(200,501)GeV, tanβ=2 ]
αθ=0.1451;
β/H∗=279;
T∗=50.3GeV;
[plot]
-
[ (mH,mA)=(200,500)GeV, tanβ=2 ]
αθ=0.1227;
β/H∗=350;
T∗=52.6GeV;
[plot]
-
[ (mH,mA)=(200,499)GeV, tanβ=2 ]
αθ=0.1067;
β/H∗=418;
T∗=54.6GeV;
[plot]
-
[ (mH,mA)=(200,490)GeV, tanβ=2 ]
αθ=0.0510;
β/H∗=985;
T∗=67.2GeV;
[plot]
-
[ (mH,mA)=(200,480)GeV, tanβ=2 ]
αθ=0.0326;
β/H∗=1644;
T∗=76.7GeV;
[plot]
-
[ (mH,mA)=(200,500)GeV, tanβ=10 ]
αθ=0.1227;
β/H∗=349;
T∗=52.6GeV;
[plot]
-
[ (mH,mA)=(200,500)GeV, tanβ=30 ]
αθ=0.1227;
β/H∗=348;
T∗=52.6GeV;
[plot]
-
[ (mH,mA)=(180,480)GeV, tanβ=30 ]
αθ=0.0644;
β/H∗=778;
T∗=63.2GeV;
[plot]
-
[ (mH,mA)=(180,482)GeV, tanβ=30 ]
αθ=0.0743;
β/H∗=677;
T∗=60.7GeV;
[plot]
-
[ (mH,mA)=(180,484)GeV, tanβ=30 ]
αθ=0.0883;
β/H∗=546;
T∗=57.8GeV;
[plot]
-
[ (mH,mA)=(180,486)GeV, tanβ=30 ]
αθ=0.1094;
β/H∗=417;
T∗=54.5GeV;
[plot]
-
[ (mH,mA)=(180,488)GeV, tanβ=30 ]
αθ=0.1464;
β/H∗=283;
T∗=50.3GeV;
[plot]
-
[ (mH,mA)=(180,490)GeV, tanβ=30 ]
αθ=0.2352;
β/H∗=158;
T∗=44.5GeV;
[plot]
-
[ (mH,mA)=(180,491)GeV, tanβ=30 ]
αθ=0.4460;
β/H∗=17;
T∗=37.9GeV;
[plot]
[plot all points with these parameters]
Results for scenario: Set 2
NB: using
vw=0.7,
T∗=50.0GeV,
g∗=106.75.
[Back to top] [Home]