PTPlot: 2HDM benchmark points
Benchmark points for the two-Higgs-doublet model with a softly-broken $Z_2$ symmetry (supplied by G. Dorsch and J.M. No).
Benchmark points for the two-Higgs-doublet model (2HDM) with a softly-broken $Z_{2}$ symmetry, with scalar potential
\begin{eqnarray}
V(H_1,H_2) & = & \mu^2_1 \left|H_1\right|^2 + \mu^2_2\left|H_2\right|^2 - \mu^2 \left[H_1^{\dagger}H_2+\mathrm{h.c.}\right] +\frac{\lambda_1}{2}\left|H_1\right|^4
+\frac{\lambda_2}{2}\left|H_2\right|^4 \nonumber \\
& & + \lambda_3 \left|H_1\right|^2\left|H_2\right|^2 +\lambda_4 \left|H_1^{\dagger}H_2\right|^2 +
\frac{\lambda_5}{2}\left[\left(H_1^{\dagger}H_2\right)^2+\mathrm{h.c.}\right] \, , \nonumber
\end{eqnarray}
In the mass basis, there are three new physical states in addition to the 125 GeV Higgs $h$:
a charged scalar $H^{\pm}$ and two neutral states $H_0$, $A_0$. Apart from their masses, the 2HDM features as free
parameters two angles ($\beta$ and $\alpha$) and $\mu^2$. In the following results we consider $m_{H^{\pm}} = m_{A_0}$,
$\mathrm{cos} (\beta - \alpha) = 0$ (the 2HDM alignment limit) an fix for convenience $\mu^2 (\mathrm{tan} \beta + \mathrm{tan}^{-1} \beta) = m_{H_0}^2$.
Results are shown for benchmarks in $m_{H_0} \in [180\,\mathrm{GeV},\,\,450\,\mathrm{GeV}]$ and
$m_{A_0} \in [m_{H_0}+ 150\,\mathrm{GeV} ,\,\,m_{H_0} + 350\,\mathrm{GeV}]$.
General parameters used for plotting:
$v_\mathrm{w} = 0.7$,
$T_* = 50.0 \, \mathrm{GeV}$ (when all points
are plotted),
$g_* = 106.75$.
Mission profile: Science Requirements Document (3 years)
This model has the following scenarios:
-
Set 1:
2HDM points which are currently allowed both for Type I and Type II 2HDM. For Type II, these will be probed by the LHC in the future, while for Type I the LHC will not be able to exclude these benchmarks, depending on the value of $\tan\beta$ (which does not influence the strength of the PT).
[plot scenario]
-
Set 2:
2HDM points which are currently allowed for Type I 2HDM, but excluded for Type II 2HDM, by LHC searches.
[plot scenario]
Full list of points:
[Show list of points]
-
[ $(m_H,m_A) = (450,625) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0048$;
$\beta/H_* = 44120$;
$T_* = 117.1 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,640) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0076$;
$\beta/H_* = 16724$;
$T_* = 109.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,645) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0087$;
$\beta/H_* = 12708$;
$T_* = 106.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,648) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0094$;
$\beta/H_* = 10692$;
$T_* = 104.5 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,650) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0099$;
$\beta/H_* = 9512$;
$T_* = 103.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,653) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0107$;
$\beta/H_* = 8064$;
$T_* = 101.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,655) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0113$;
$\beta/H_* = 7220$;
$T_* = 99.9 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,660) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0130$;
$\beta/H_* = 5474$;
$T_* = 96.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,665) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0151$;
$\beta/H_* = 4135$;
$T_* = 92.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,670) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0179$;
$\beta/H_* = 3074$;
$T_* = 87.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,675) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0219$;
$\beta/H_* = 2219$;
$T_* = 82.7 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,685) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0399$;
$\beta/H_* = 904$;
$T_* = 69.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,690) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0698$;
$\beta/H_* = 601$;
$T_* = 59.6 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,692) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0957$;
$\beta/H_* = 398$;
$T_* = 54.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (450,695) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.2153$;
$\beta/H_* = 159$;
$T_* = 44.4 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,600) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0089$;
$\beta/H_* = 13020$;
$T_* = 106.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,610) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0114$;
$\beta/H_* = 7705$;
$T_* = 100.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,615) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0129$;
$\beta/H_* = 5950$;
$T_* = 97.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,620) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0148$;
$\beta/H_* = 4579$;
$T_* = 93.4 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,622) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0157$;
$\beta/H_* = 4111$;
$T_* = 91.9 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,624) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0167$;
$\beta/H_* = 3683$;
$T_* = 90.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,625) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0172$;
$\beta/H_* = 3483$;
$T_* = 89.5 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,628) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0190$;
$\beta/H_* = 2926$;
$T_* = 86.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,630) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0204$;
$\beta/H_* = 2591$;
$T_* = 85.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,632) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0221$;
$\beta/H_* = 2281$;
$T_* = 83.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,635) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0251$;
$\beta/H_* = 1855$;
$T_* = 79.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,642) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0377$;
$\beta/H_* = 991$;
$T_* = 70.6 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,644) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0449$;
$\beta/H_* = 904$;
$T_* = 67.4 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,645) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0493$;
$\beta/H_* = 762$;
$T_* = 65.7 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,646) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0547$;
$\beta/H_* = 716$;
$T_* = 63.9 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,647) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0611$;
$\beta/H_* = 598$;
$T_* = 62.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,648) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0688$;
$\beta/H_* = 570$;
$T_* = 60.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,649) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0789$;
$\beta/H_* = 491$;
$T_* = 57.9 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,651) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1093$;
$\beta/H_* = 341$;
$T_* = 53.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (400,652) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1364$;
$\beta/H_* = 275$;
$T_* = 50.0 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (300,525) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0128$;
$\beta/H_* = 7432$;
$T_* = 99.1 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (300,540) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0179$;
$\beta/H_* = 3815$;
$T_* = 90.1 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (300,560) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0372$;
$\beta/H_* = 1153$;
$T_* = 71.9 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (300,570) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0889$;
$\beta/H_* = 441$;
$T_* = 56.5 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (300,572) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1233$;
$\beta/H_* = 322$;
$T_* = 51.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (300,574) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.2095$;
$\beta/H_* = 160$;
$T_* = 45.1 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (250,520) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0356$;
$\beta/H_* = 1324$;
$T_* = 73.7 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (250,525) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0469$;
$\beta/H_* = 978$;
$T_* = 68.1 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (250,530) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0678$;
$\beta/H_* = 661$;
$T_* = 61.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (250,535) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1271$;
$\beta/H_* = 321$;
$T_* = 51.7 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (250,537) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.2076$;
$\beta/H_* = 164$;
$T_* = 45.4 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,503) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.2462$;
$\beta/H_* = 126$;
$T_* = 43.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,502) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.1803$;
$\beta/H_* = 210$;
$T_* = 47.5 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,501) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.1451$;
$\beta/H_* = 279$;
$T_* = 50.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,500) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.1227$;
$\beta/H_* = 350$;
$T_* = 52.6 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,499) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.1067$;
$\beta/H_* = 418$;
$T_* = 54.6 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,490) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.0510$;
$\beta/H_* = 985$;
$T_* = 67.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,480) \, \mathrm{GeV}$, $\tan \beta = 2$ ]
$\alpha_\theta = 0.0326$;
$\beta/H_* = 1644$;
$T_* = 76.7 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,500) \, \mathrm{GeV}$, $\tan \beta = 10$ ]
$\alpha_\theta = 0.1227$;
$\beta/H_* = 349$;
$T_* = 52.6 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (200,500) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1227$;
$\beta/H_* = 348$;
$T_* = 52.6 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,480) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0644$;
$\beta/H_* = 778$;
$T_* = 63.2 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,482) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0743$;
$\beta/H_* = 677$;
$T_* = 60.7 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,484) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.0883$;
$\beta/H_* = 546$;
$T_* = 57.8 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,486) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1094$;
$\beta/H_* = 417$;
$T_* = 54.5 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,488) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.1464$;
$\beta/H_* = 283$;
$T_* = 50.3 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,490) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.2352$;
$\beta/H_* = 158$;
$T_* = 44.5 \, \mathrm{GeV}$;
[plot]
-
[ $(m_H,m_A) = (180,491) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
$\alpha_\theta = 0.4460$;
$\beta/H_* = 17$;
$T_* = 37.9 \, \mathrm{GeV}$;
[plot]
[plot all points with these parameters]
Results for point
[ $(m_H,m_A) = (250,537) \, \mathrm{GeV}$, $\tan \beta = 30$ ]
Using the following model specific parameters:
$\alpha_\theta = 0.2076$;
$\beta/H_* = 164$;
$T_* = 45.4 \, \mathrm{GeV}$;
And the following general parameters:
$v_\mathrm{w} =
0.7;
$
$g_* =
106.75;
$
New: download
the source points as a CSV [experimental]
[Back to top] [Home]